BINARY/HEXADECIMAL NUMBER CONVERSIONS

Bits: Binary Digits

A bit is usually represented in a computer's main memory by a transistor that is switched on or off, or a capacitor that is charged or discharged.

Decimal Numbers (0-9)

- This is the numbering system we use in math everyday
- Aka Base 10

```
10<sup>4</sup>=10,000 10<sup>3</sup>=1000 10<sup>2</sup>=100 10<sup>1</sup>=10 10<sup>0</sup>=1
```

- Each digit represent a base of 10 to some power
 - For example, $100 = 1 * 10^2 + 0 * 10^1 + 0 * 10^0$
 - Remember anything to the o power is 1
 - More examples (break down the following)
 - **1**301, 2010, 58, 175

Binary Numbers (0s and 1s)

- These are the only numbers the computers understands
 - 1 means on
 - o means off
- Aka Base 2
- To convert a binary number to decimal:
- **10101101**₂
- **10110101**₂

Binary to Decimal

To convert from Binary (base 2) to Decimal (base 10), use the following table:

2 ⁹ 512	2 ⁸ 256	2 ⁷ 128	2 ⁶ 64	2 ⁵ 32	2 ⁴ 16	2 ³	2 ²	2 ¹ 2	2° 1
							1	1	0

- Example: 110₂ convert to decimal (base 10)
- After filling in the table, do the following
- 1 * 4 + 1 * 2 + 0 * 1 = 6
- Try these: 110101, or 11000011,

Decimal to Binary

- To convert a decimal number to binary
 - Use the following table (where each row is a power of 2, starting with o on the right)

2 ^{7 =}	2 ^{6 =}	2 ^{5 =}	2 ^{4 =}	2 3 =	2 ^{2 =}	2 ^{1 =}	2° =
128	64	32	16	8	4	2	1

Take your initial number and find the largest base
number that can go into it, for example, let's use
52₁₀

Decimal to Binary

- Now try:
- Convert 7₁₀
- Convert 47₁₀
- Convert 222₁₀

Bits - 8 Bits = 1 byte

- One bit on its own can't represent much, so they are usually grouped together in groups of 8, which represent numbers from o to 255. A group of 8 bits is called a byte.
- The speed of a computer depends on the number of bits it can process at once. A 32 bit computer can process 32 bit numbers in one operation, while a 64 bit computer can process 64 bit numbers in one operation.

Questions

- What happens when a zero is placed on the left hand side of the number? What do we do in decimal?
- What happens when a zero is put on the right hand side of a binary number?
 - 111₂ versus 1110₂
- What is the pattern when all of the bits are turned on, for example, convert to binary and then discuss the pattern of:
- **1**₂
- **11**₂
- **111**₂
- 1111₂
- 11111₂

Questions

• If each character on your keyboard represents 1 bit. How many bits does a computer need to store characters? How many total characters are on the keyboard?

7 bits are needed, but since computers work in groups of bytes (8 bits), we would use 8 bits with 1 bit wasted.

Hexadecimal Numbers (0-F)

- Hexadecimal Numbers were created to represent memory address in a more condensed form (rather than writing really long binary numbers).
- Aka Base 16 numbers using 0-9 and A-F
- The following table explains:

0	1	2	3	4	5	6	7	8	9	Α	В	C	D	Е	F
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Hexadecimal to Decimal

If you have a hexadecimal number like DEB and need to convert it into a decimal number, you need to use the following table:

16 ⁴	16 ³	16 ²	16 ¹	16°
65, 536	4096	256	16	1
		D	E	В

- Now use multiplication
- D = 13, so 13 * 256 +
- E = 14, so 14 * 16 +
- B = 11, so 11 * 1
- 3328 + 224 + 11 = 3563
- Now try with these numbers AF10₁₆, DD73₁₆, FFF25₁₆

Decimal to Hexadecimal

- Whenever you are going from decimal you divide, and in this case you will divide by base 16 repeatedly by using the remainders.
- For example if you have 123₁₀

- 123 falls between 256 and 16, so we will use the smaller number and divide, or 123/16 = 7 with a remainder of 11
- Since 11 represents B in hexadecimal numbers, your final answer would be 7B.
- Now try: 199₁₀, 220₁₀, 20₁₀, 8₁₀
- Or try 4100₁₀

Conversion summary

- How do you convert base 2 to base 10?
- How do you convert base 10 to base 2?
- How do you convert base 10 to base 16?
- How to you convert base 16 to base 10?
- How do you convert base 16 to base 2?
- How do you convert base2 to base?
- Try:1111₂ To _______16
- Try: F23₁₆ To _______